1. Indicate whether if the following statements are TRUE or FALSE:

$a - b = a + \left(-b\right)$	-a+b=b-a=b+(-a)=b-a	a - (-b) = a + b
True	True .	True
$-a-(-b)=b+a-\alpha+b$	b-a = -(a-b)	a+b-c+(-d)=a+b-c-d
False	$\frac{40-5=-65-10)}{+5}$ True	True

2. Evaluate each of the following by adding or subtracting

a) $1+(-2)-3+4-(-5)$ = +(-2)+(-3)+4+5 = +(+5+(-2)+(-3)-(-5) = +(+5+(-5) = +(+5-5 = +(+5-5	b) $12 - (-15) + (-20)$ = $ 2 + 5 + (-20) $ = $ 2 + 5 - 20 $ = $27 - 20$ = 7	c) 8+(-12)-(-13) =8+(-12)+13 =8+13-12 =21-12 =9
d) $8+(-9)-(-11)-12$ =8+(-9)+(1+(-12)) =8+(1+(-9)+(-12)) =19+(-21) =19-21	e) -7+6-13+(-14)-(-23) =-7+6+(-13)+(-14)+23 =6+23+(-7)+(-13)+(-14) =29+(-34) =29-34 =5	f) -20-(-15)+19-23 =-20+15+19+(-23) =15+19+(-20)+(-23) =34+(-43) =34-43 =11
g) 12+22-43+41-(-15) = 2+22+(-43)+41+ 5 = 2+22+41+(5+(-43)) = 3++56-43 = 90-43 = 47	h) -12+(-13)-14+(-15)-(-16)	i) -15+(-17)-19+23-(-22) =- 5+(- 7)+(- 7)+23+22 =23+22+(- 5)+(- 7)+(- 9) =45+(-5) =-6
3 Evaluate each of the following	A 1 C A!	

3. Evaluate each of the following the order of operations

a) $8+2\times5$ =8+(0 = 18	b) 9+3×4÷2-3 =9+12÷2-3 =9+6-3	c) 2+3×4-6÷2 =2+ 2-3 = 4-3 = 1
d) 4+3×5-6÷2 =4+15-3 =19-3 =16	e) $8 \times (-4) + 12 \div (6)$ = $-32 + 2$ = -30	f) $1200 \div 2 \times 10 \div 5 \div 3$ $=\frac{1200 \times 10}{2 \times 5 \times 3}$ $=\frac{1200}{3}$ $=\frac{400}{3}$

7. Given that
$$(x-y)^2 = x^2 - 2xy + y^2$$
, what is the value of $997^2 - 2(997)(995) + (995)^2$
 $\times = 997$ $y = 995$ $(x-y)^2 = 1997 - 995)^2$
 $(997 - 995)^2$
 $= 2^2$
 $= 4$
8. Dave wrote 12 tests and got an average of 68%. If he gets 85% on every new test, that he was a second constant.

8. Dave wrote 12 tests and got an average of 68%. If he gets 85% on every new test that he writes, how many more tests will he need to until he gets an average greater than 75%? Method 21. (The smoot way)
$$68\% \times 12 = 816\%$$
 $816\% + 85\% = 901\%$ $911\% + 13 \times 69.3$ $(312) + 85 \times = 75\% \times 1$

9. Mt. Everest, the highest elevation in Asia, is 29,028 feet above sea level. The Dead Sea, the lowest elevation, is 1,312 feet below sea level. What is the difference between these two elevations?

$$\begin{array}{r}
29028 - (-1312) \\
= 29028 + 1312 \\
= 30340
\end{array}$$

10. The sum of 8 consecutive numbers is 188, what are the numbers? $188 \div 8 = 23.5$ 20 21 22 23 24 25 26 27

The numbers are 20, 21, 22, 23, 24, 25, 26, and 27.

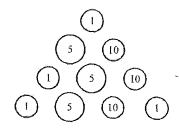
11. There are 12 sedans and 18 minivans. Each sedan has 5 females and each minivan has 7 males. What is the difference in the number of males and females?

$$1.8 \times 7 - 12.55$$

= 126 - 60
= 66

11

12. Each burger at a fastfood chain costs \$4.50 and each hotdog costs \$2.25. If Dave spent find only on hotdogs and burgers, and has twice as many hotdogs than burgers, how many of each did he purchase?


13. There are 90 students in a class and there are twice as many females and than males. The average score of the females in the class is 85% and the average score of the males is 70%. What is the average score of all the students in the class?

$$90 \div (2+1)$$
 $30 \times 2 = 60$ females $60 \times 85\% = 5100\%$ $5100\% + 2100\% = 7200\%$ $= 90 \div 3$ $30 \times 1 = 30$ males $30 \times 70\% = 2100\%$ $7200\% - 90 = 80\%$ $= 30$

14. Micah placed pennies, nickels, and dimes in rows according to the diagram so that each row contains one more coin than the previous. What is the number of cents in the value of all the coins in the first 13 rows?

Num of coins =
$$(1+13) \times 13 + 2$$

= $14 \times 13 + 2$
= 7×13
= 91

$$1+5+0=16 \text{ cents}$$

 $91\div 3=30\cdots 1$
 $30\times 16+1$
 $=480+1$
 $=481 \text{ cents}$

	Name:	Allen	XU	Peri	od 7	
--	-------	-------	----	------	------	--

Date: Sep. Oth

Math 8H 2025 Lesson 2 Perfect Squares, Cubes, and Square Roots

1. Indicate which of the following numbers are perfect squares, cubes, both, or neither. If it is a perfect square or cube, write it as a cube or square:

Ÿ, 2423,	•				
a) 225	b) 1024	c) 243	d) 196	e) 400	
a) 225 Perfect Square 15 ²	Perfect Source	Neither :		Perfect Square 202	
f) 128	g) -1	h) 8000	i) 289	j) 125	
Neithor	Perfect Cube-15	Perfect Cube 203	Pexfect Square	Perfect Cube 53	
1/13/13	1)-8	M) 10,000 1 2	n) 64	o) 189	
Perfect Cube 178	Perfect Outer 2"	Perfect Square	Both 8 43	Neither, but 172=28	
p) 800	q) 729 🤧	r) 0	s) 625	t) 1331	
Nerthex		Both 02 03	Perfect Square	Perfect Cube	
2. Given each of the equations below, indicate whether if it is TRUE or FALSE, explain your work:					
	year.			TRUE or FALSE	

	41		20		يار سين خار سين	1	1
	Perfect Cube	Both ()2	03	Perfect	Square	Perfect Cul) e
Siven e	ach of the equations below, in	dicate wheth	er if it is TI	RUE or FAL	SE, explain yo	our work:	Angergen.
)	$\sqrt{-9} = 3$ TRUE or FA		ii)	∛–64	= 4	TRUE or FAL	SE
(Cai	\sqrt{t}	o "B", then tl	he square i	root of "B"	is equal to "A	A" : (TRUE) or	FALSE CAR
iii)	A number can only be a perfe	ct square or	a perfect c	ube, but no	ot both: TRU	E or FALSE	4
iv)	The square root of a negative	number doe	s not exist	(TRUE) or	FALSE NX	N=P	
v)	The cube root of a negative r	umber does	not exist:	TRUE or	FALSE X	$M \times M = M$	
vi)	Perfect squares can only be p	ositive:	_	TRUE or	FALSE [
vii)	Perfect cubes can only be po	sitive:	j	TRUE or	FALSE		
viii)	Suppose "a" is an integer and then a^2 must be a perfect s		ct square,	TRUE or	FALSE		
ix)	If "a" is a negative number to perfect cube	nen it can nev	ver be a	TRUE O	r FALSE		
x)	If "a" and "b" are positive in perfect squares, then $a \times b$			TRUE O	r FALSE		

xii) Suppose "a" and "b" are not perfect squares, then $a \times b$ can never be a perfect square

 $a{ imes}b$ can never be a perfect square

Suppose "a" and "b" are prime numbers, then

xi)

TRUE or FALSE

They can be the seve

3. Draw a Number Line and Estimate each of the following

(a) $\sqrt{50}$ $1^2 - 41$ $8^2 - 64$	b) $\sqrt{180}$ $ 3^2 = 6 $ $ 4 = 96 $	c) $\sqrt{77}$ $8^2 = 64$ $9^2 = 81$
7250	13 /180 , 14	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d) $\sqrt{134} ^2 = 2 2^2 = 4 4$	e) $\sqrt{200}$ $14^2 = 196 + 15^2 = 225$	f) $\sqrt{63,859,102} \approx 64,000,000 = 6000$
	15	7990 16383762 8000
g) $\sqrt{0.0000485}$ $0.007 = 0.000049$	h) $\sqrt{2385029} \cdot 1500^2 = 2250000$	i) $\sqrt{0.0023501}$ 0.05 ² = 0.0025000
0.to	1600° = 256 0000 1500 - 17385079 1600	004

4. Suppose "a" is a perfect square, what numbers can the units digit be?

5. Suppose "A" and "B" are single digit positive integers, which of the following can be a Perfect Square?

i) 7ABC4 ii) 8ABC2 iii) 9ABC6 iv) 75ABC44 Yes. No Yes Yes Yes $1^2 = 1 \cdot 2^{2-4} \cdot 3^{2-9} \cdot 4^2 = 16 \cdot 5^2 = 25 \cdot 6^2 = 36 \cdot 7^2 = 49 \cdot 8^2 = 64 \cdot 97 \cdot 81 \cdot 10^2 \cdot 100$

6. A square has a perimeter of 28cm. What is the area of the square in cm²?

7. Two squares, each with an area of 30cm², are placed side by side to form a rectangle. What is the perimeter of this rectangle? Give your answer to 3 decimal places:

8. A cube has a volume of 125cm³. What is the area of one face of the cube?

 $\sqrt{125} = 5 \text{ cm}^2$ $5^2 = 25 \text{ cm}^2$

9. What is the "RULE of 5's"? What is the trick to squaring a number that ends with 5? le: 125 x 125 = ? 17 5 × 175= 10(12 1/1042)+101+75=129×130+25

10. Suppose "A" is a single digit positive integer, what is the value of $A5 \times A5$ in terms of "A"?

10/4/1/10/A)+25

11. Square root the following without using a calculator:

a) √15625	b) $\sqrt{42025}$	c) $\sqrt{93025}$
= 125 ^X	205 [*]	- 305 ^X
d) √65025	e) $\sqrt{497025}$	f) $\sqrt{46225}$
2554	105×	2.15
r JV		
		•

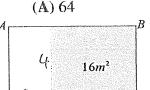
12. Which is bigger? 100^2 or 50^3 Explain your answer:

 50^3 , hereauce $100^2 = 100 \times 100 = 50 \times 2 \times 50 \times 2 = 50 \times 50 \times 4$, but $50^3 = 50 \times 50 \times 50$. 4<50, so 503 is bigger.

In the following equations, the letters a, b and c represent different numbers. 13.

$$1^{3} = 1$$

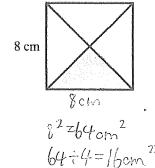
$$3\sqrt{8} = 2 \quad a^{3} = 1 + 7$$


$$27 \quad 3^{3} = 1 + 7 + b \mid Q$$

$$54 \cdot 4^{3} = 1 + 7 + c \cdot 56$$
The proportion value of $a + b + c$ is $2 + 19 + 56$

The numerical value of a+b+c is 2+19+56=17(A) 58 (B) 110 (C) 75

(E) 79


ABCD is a square that is made up of two identical rectangles and two squares of area 4 cm² and 16 . 14 cm². What is the area, in cm², of the square ABCD? (E) 20

 $(2+4)\times(2+4)=36$ cm²

- 15. The diagonals have been drawn in the square shown. The area of the shaded region of the square is
 - $(A)^4 \text{ cm}^2$
- (B) 8 cm^2
- (C) 16 cm^2

- (D) 56 cm^2
- (E) 64 cm^2

16.

Two squares, each with side length 5 cm, overlap as shown. The shape of their overlap is a square, which has an area of 4 cm². What is the perimeter, in centimetres, of the shaded figure?

- (A) 24
- (B) 32
- (C) 40

- (D) 42
- (E) 50

$$P = 5(4) + 9(4)$$
= 32/1

 $\begin{array}{c|c}
5 & 2cm \\
2cm & 4cm & 2cm \\
2cm & 2cm \\
2cm & 5
\end{array}$ $\begin{array}{c|c}
5^2 + 5^2 - 2 \times 4 \\
= 25 + 25 - 8 \\
= 42 cm
\end{array}$

17. Given that $a^2 - b^2 = (a+b)(a-b)$, what is the value of $1000^2 - 999^2$? $Q = |QQ| \qquad b = |QQ|$

 $= \sqrt{999}$ 18. If (k+3)(k-3)=1000, then what is the value of k^2 ?

$$(4+3)(4-3)=k^2-3^2=1000$$

$$k^{2}-3^{2}=1000$$
 $k^{2}=1000+3^{2}$
 $k^{2}=1000+9$
 $k^{3}=1000+9$

	٦.	3.7		1	ì
<i>[</i> ^	1 no	Ж.,	10000	-1 /	ľ
Name:	たっては	$-/N_F$	112/39	$F_{i} = F_{i}$	
TAUTITE'	5 1 . 1	100	1 3, 19	, \ E	

Math 8H 2025 Lesson 3 Multiplication Strategies:

- 1. When multiplying the following numbers together, which integers should you combine together first? 2×3×4×5×7×9(2×5)×4×3×7×9)=10×4×(21×9)=10×4×189=10×756=7560
 - 2. When multiplying with a two digit number like 27, how should you split it into two values to make it easier to Split into 20 and 1, because 20 is easy to unitary, and 7 is a single digit number 3. Indicate how you would use the AREA Model to multiply the following: which is also easy

a) 13×7 = 10(1)+3(1) = 70+21 = 91	b) 21×8 = 20 (8) + 10 (8) = 160 + 8 = 168	c) 18×9 = [0(9)+8(9) = [840)-184) = 90+70 also: = 180-18 = 162 = 162 rule of 9's
d) 24×7 = 20(7)+447) = 140+28 = 158	e) 91×8 = 100/5 (5) = 100/5	n 135×8 =100 (61-30 (6) +5(8) == \$00 +240 +240 == 1080
g) 123×6 =[00(6)+20(6)+3(6) =600+[20+]8 =738	h) 233×7 =200(1)+30(7)+3(7) =1400+2(0+2) =1631	i) 413×8 =400 & 2+10 (\$)+3(8) =3200 +80+24 =3304

					•
-	\rightarrow 4. Multiply the fo	ollowing by break	ing it down and then combinir	ng factors:	
	a) 25×14	ь), 2×5×3×7	c) 2×3×4×10	d) 24×15	e) 35×6
	3x5x2x7	=10,721	=by449	. =4×6×3×5	=7×5×6
	in HICYT	=20	= 24.819	=4x3x6x5	=7×30
	=3510		- 19 (T	=12×30	=210
	7.55			=360	
	f) 45×8	g) 28×12	h) 25×7×4	i) 85×3×6	j) 13×11×5
	=5x9x8	= 1/x7x12	=25×4:17	=17x5x3x6	=13×5×/1
	=40×9 .	=4×84	=100×7	=51×30	=65×11
	=360	=336	=700	=1530	=650+65
	•				
	k) 11×17×2	L) 123×11×3	m) 5342×11	n) 35×12×22	o) 77×32×25
	=11 ×34	=123×3×11	=53420+5342	=7x5x3x4x2x11	=7X11x4x9X25
	=340+34	=369×11	=58762	=7x3x5x2x4x11	=7x8x4x25x11
	=374	=3690+369		=21×10×4×11	=56×100×//
		=4059		=210×4×11	=5500×/1 ·

5. Use the formula $(a+b)(a-b) = a^2 - b^2$ to evaluate each of the following

				•
a) 17×15	b) 19×21	c) 14×16	d) 81×79	e) 35×45
$=16^2-1^2$	=202-12	$ =15^2-1^2$	$=80^{2}-1^{2}$	=402-52
=256-1	=400-1	=225 - 1	=6400-1	=1600-25
=255	=399	=224	=6399	= 5 5
f) 27 × 33	g) 23×27	h) 45×55	i) 59×51	j) 83×77
$=30^{2}-3^{2}$	$=25^2-2^2$	=502-52	=552-42	$=80^2-3^2$
=900-9	=225-4	=2500-25	=3025-16	=6400-9
=891	=221	=2475	=3009	=6391
k) 95×35	1) 35×45	m) 55×65	n) 79×71	o) 64×66
$=65^2-30^2$	=402-52	=602-527600	=752-42	=652-12
=4225-900	=1690-25	= 2500-25 350	=5625-16	=4225-1
=3325	=1975 1518	=2475	=5609	=4224
p) 72 × 68	q) 24×16	$r)62 \times 38$	s) 43×77	t) 125 × 35
na 107 - 12°	=202-42	$=50^2-12^3$	$=60^2-17^2$	$=80^{2}-45^{2}$
=4900-4	=400-16	=2500-144	=3600-289	=6400-2025
= Lgah	=384	=275/ 235%	=3311	=\$KF 4575
h lieotha Rula a	f 9's to avaluate the fall			

6. Use the Rule of 9's to evaluate the following:

a) 17×9	b) 45×9	c) 13×9	d) 81×99	e) 35×99
=1940)-174)	=45(10)-45(1)	=13(10)-13(1)	=81400>-814)	=354001-354)
=170-17 =153	=450-45	=130-13	=6100-61	=3500-35 7465
f) 17×99	g) 44×99	1) 57000	≥8019 ·	(35B) < '
=17400>-174>	=44400)-44(1)	h) 57×999 =5740007-5747	i) 123 × 999 = 23 400() - 234)	j) 123 × 9999
=1700-17	=44017-44	= \$22000 · 57 L	=1230007 123	=123(10000)-123(1) =123(0000-123(1)
7. Use algebra to eval	=435%	351645 E6997	al22871	1229877

Use algebra to evaluate each of the following:

c ronownig.	
b)13(15)-12(15)+14(15)	c) $15(18)-9(18)+3(18)$
=13x-12x+14x	=15x-9x+3x
=15x	9x
	=948
(-).25	=162
e) $3(15)-8(20)+4(25)$	f) (172)+2(17)+1 x2+2x+1
1=363x2-814x2+465x2	
=9x-32x+20x	=1747)+247)+1 = (x4)
(= 19
=-3(5)	= 37
	b)13(15)-12(15)+14(15) =13x-12x+14x

8. Use the equation: $a^2 - b^2 = (a+b)(a-b)$ to evaluate each of the following:

a) 1000 ² - 999 ²	b) 501 ² - 499 ²	c) 43 ² - 7 ²	d) 8992-1012
= 4000 + 999)(1000 - 999)	=451+499)(501-499)	=(43+7)(43-7)	=899+1017(899-101)
= 1999(1)	=1000(2)	=50 (36)	=1000(798)
= 1999	=2000	=1800	=798000
e) $55^2 - 45^2$	f) 355 ² - 145 ²	g) 217 ² -17 ²	h) $(2^3)^2 - 4^3$
= $(55 + 45)(55 - 45)$	=(355+145)(355-145)	= (217+17)(217-17)	$= \delta^2 - 4^2$
= $100(10)$	=500(210)	= 234(200)	$= (\delta + 4)(\zeta - 4)$
= 1000	=105000	= 46800	$= \frac{12}{10}(4)$

9. Use the formula $a^2 = (a+b)(a-b)+b^2$ to calculate each of the squares:

a) 99^2	b) 98 ²	c) 101^2	d) 102 ²	e) 51 ²
= $(99+1)(99+1)+1^2$	=\93+2)(98-2)+7 ²	= $401 + (3401 - 1) + (^2)$	=402+2)402-32+2 ²	=(5 +()(5 -1)+ ²
=144 (18)+1	=100 496)+4	=102(100))+1	=104400)+4	=5(25))+1
=9808+1	=9600+4	=10200+1	=10400+4	=2600+1
=9801	=9604	=1020	=10404	
f) 26 ² =(26+24)(26-24)+24 ² =50(2)+5760 =(00+5760 =5860	g) 44×99	h) 93 × 93 =13 ² =19 ³ +7 ×13-7 H7 ² =100 <76 × 44 =7600 + 49 =7649	i) 73×73	=2601 j) 81 ² =(81+19)(81-19)+19 ² =(00.62)+361 =6200+361 =6561

- 10. For each statement, describe a situation in which the statement is true.
 - a. The product of two integers equals one of the integers.

b. The product of two integers equals the opposite of one of the integers.

c. The product of two integers is less than both integers.

$$-2x5 = -10$$

d. The product of two integers is greater than both integers.

11. If $a \times 23 \times b = 6210$ and a + b = N, what is the smallest possible value of N?

12. One day a sales person talked to 16 customers in 1 hour. How long would he need to work if he wanted to talk to 112 customers?

13. Gaston withdrew \$26 from his bank account each week for 17 weeks. Use integers to find the total amount Gaston withdrew over the 17 weeks. Show your work.

14. Since sunset 6 h ago, the temperature in Brandon, Manitoba, has decreased from +1 °C to -11 °C. Predict what the temperature will be 3 h from now. What assumptions did you make?

$$|+(-11) = |2^{\circ}C|$$
 $|2^{\circ}C + 6 = 2^{\circ}C/hr$ $2^{\circ}C \times 3h = 6^{\circ}C$

The temperature will decrease by 6°C for the next 3hrs.

15. The only possible values of x are 3, 6, 9, and 12. The only possible values of y are -10, -8, -6, and -4. What is the largest and smallest value of $x \times y$?

Largest:
$$x=3, g=-4 3(-4)=-12$$

Smallest:
$$x = 12, y = -10$$
 [26-10] = -120

16. The mean daily high temperature in Rankin Inlet, Nunavut, during one week in January was -20 °C. What might the temperatures have been on each day of the week? How many different possible answers can you find? Explain.

There are many different answers since this is just a prediction.

17. The mean of a group of six numbers is 40. The number 12 is removed from the group, what is the new mean?

18. In the computation shown, X , Y , Z represent a different digit respectively. Determine the value of X .

XY

$$\frac{31\ 2}{34-3\ 2}$$

19. The prime number 1999 can be written as
$$a^2 - b^2$$
. Given that $a^2 - b^2 = (a+b)(a-b)$, what is the value of

$$a^2+b^2$$
?

$$\alpha^2 + b^2$$

$$=1000^{2}+999^{2}$$

20. The product of 119 integers is negative. At most, how many of those numbers must be negative? Explain your answer in words.

Since the product of an even number of negative integers must be positive, the total amount of negative Integers must be odd. The biggest add number between 0 and 119 is 119, so the can be 119 negative integers.

21. There are four positive numbers, a, b, c, and d (not necessarily integers). Obviously there are six ways to multiply pairs of them: ab, ac, ad, bc, bd, and cd. If I tell you that five of the six pairs of products are 2, 3, 4, 5, and 6, what is

(2x3)4)15)16)=(16)(ad)(bc)(bd)=(0)3(b)3(c)2(d)2

(ab)(ac)(ad)(be)(bd)(cd)=(abcd)³.

(2)(3)(4)(5)(b)=720

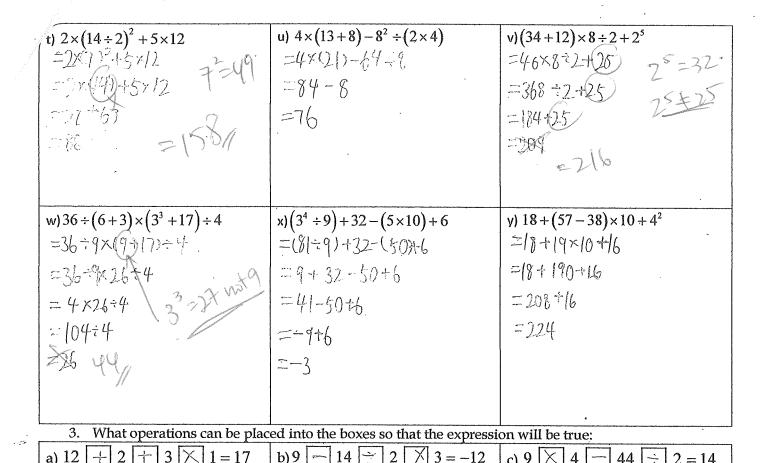
720cd=(abcd)³, so 720cd is a perfect cube (then idk)

(K=24)

22. Challenge: A farmer grows 3000 bananas, and wants to take them to the market to sell. The market is 1000 miles away and the only way he can get there is by a hungry camel that can carry a maximum of 1000 bananas at a time. In addition, the camel needs to eat one banana to refuel for every mile that he walks. What is the maximum number of bananas that the farmer can successfully get all the way to the market?

· Maximize the number of bancanas at dropost locations to minimize the barelling distance (and how many you can carry)

Date: Sep. 18


M8H 2025 Lesson 4 Order of Operations:

1. Evaluate each of the following operations. Remember the order of the operations. Show all your steps:

		ar your steps.
a) 2+5×4 =2+20 =2.2	b) -5-8÷2 =-5-4 =-9	c) 8×2+6 =16+6 =22
$\begin{array}{c} d) -9 \times 7 - 20 \\ = -6.3 - 20 \\ = -8.3 \end{array}$	e)8÷2+6 =4+6 =10	f) 12 - 6 × (-3) =12 - (-18) =12 + 18
g)3+11×4-21 -3+44-21	h) $-6 + 24 \div 8 - 2$ = $-6 \div 3 - 7$	$=30$ i) $-12-18 \div 9-6$
=47-21	=-3-2	=-12-2-6 =-14-6
j) (7+2)×4-5+12÷2 = 9×4-5+6 = 36-5-16	k)11×(3+4)-12×2 = ×7-24 =77-24	L) $-20 \div (12+8) - 15 \div 5 + 1$ = $-20 \div 20 - 3 + $ = $- -3 + $
=31+6 $=37$	=53	=-4+1 =-3
m) 2(12÷3+4)+12÷4 =2(4+4)+12÷4 =2(8)+12÷4 =16+3 =19	n) $(-8 \times 2 + 12 \div 3) \div 4 \times 3$ = $(-1/6 + 4) \div 4 \times 3$ = $(-1/2) \div 4 \times 3$ = -3×3	p) 12÷4×3÷6×8÷4 =3×3÷6×8÷4 =9÷6×8÷4 =1.5×8÷4 =12÷4
Q) $(12+2)\times 4-(6\times 3\div 2+12)$ = $ 4\times 4-(18\div 2+12)$ = $ 4\times 4-(9+12)$ = $ 4\times 4-2 $ = $ 4\times 4-2 $ = $ 4\times 4-2 $ = $ 4\times 4-2 $	r) $4+(-3-2)\times(14-2)+9\times(6-2)$ = $4+(-5)\times12+9\times4$ = $4+(-60)+36$ = $-56+36$ = -20	$\begin{array}{l} = 3 \\ \text{s) } 3(1 - (5 \times (5+2)+1)-2) \\ = 3(1 - (5 \times 7+1)-2) \\ = 3(1 - (35+1)-2) \\ = 3(1 - 36-2) \\ = 3(-35-2) \\ = -117 \end{array}$

2. Use BEDMAS to evaluate each of the following:

2. Use BEDMAS to evaluate each of the following:						
a) $4+5^2$ = $4+25$ = 39	b) 3×2 ⁴ =3×16 =48	c) 11+3×2 ³ = +3×8 = +24 = 35				
$\begin{array}{l} $	e) $2^2 + 3^2 + 4^2$ = $4 + 4 + 16$ = 29	f) $4-(1+2)^2$ = $4-3^2$ = $4-9$ = -5				
$\begin{array}{c} g)2(3+4)^{2}-10 \\ = 2(7)^{2}-10 \\ = 2(14)-10 \\ = 2.8-10 \\ 3.8 \end{array}$	h) $(4)(1+2)^2$ = $(4)(3)^2$ = $(4)(9)$ = 36	$i)(\sqrt{12+4})-3^{2}$ $=(\sqrt{16})-3^{2}$ $=(4)-9$ $=-5$				
j) $\sqrt{3^2 + 4^2}$ = $\sqrt{9 + 1/6}$ = $\sqrt{2.5}$ = 5	$k)3-2^3 \times 4$ = $3-8 \times 4$ = $3-24$ = -21 = $-29/1$	L) $3^3 - 2^2 + 1^1$ = $9 - 4(-1)$ = 6				
m) 5×3 ² - 4 =5×9 - 4 =45 - 4 =41	n) $(-2)^2 + 3$ = $(4) + 3$ = 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
Q) $40 \div 2 \times 3^2 - 4$ $= 40 \div 2 \times 9 - 4$ $= 20 \times 9 - 4$ = 180 - 4 = 176	r) $\frac{3^3 - 2^2 + 5}{12 \div 3}$ $= \frac{27 - 4 + 5}{4}$ $= \frac{26}{4}$	s) $\frac{(21-17) \div 3}{10^2 \div 20}$ $= \frac{4 \div 3}{100 \div 20}$ $= \frac{\frac{4}{3}}{\frac{100}{20}}$ $= \frac{4}{3} \div \frac{5}{3}$				

4. Indicate the all mistakes in each of the following examples shown below. There are at least one mistake in each example:

c) 9 X

a) Julie's Work:	b) Tim's work:	c) Tracy's Work:
Pid 3+2 first 15 ÷ 3 + 2 - 7 × 4	Did 2-6 first	Might be
$15 \div (3+2) - 7 \times 4$	$-27 + 9 \times 2 - 6$	$(-3-4)-5\times2+2\div(-1)$
$=15 \div (5) - 28$	$=-27+9\times(-4)$	=(-7)-10+-2)
= 3 - 28	=-27+(-36)	= (13) -7 - (0+-2)
= -25	= 63	=-7-10-2

Where can you insert a pair of brackets into the following expression so that the value can be maximized?

$$3 + (6 \times 9 + 2 - 5) \times 4$$

$$= 3 + (5 + 4 - 5) \times 4$$

$$= 3 + 5 \times 4$$

$$= 3 + 20 + 4$$

6. Jason wrote six math exams $\stackrel{\sim}{\text{and}} \stackrel{207}{\text{got}}$ the following scores: 87%, 74%, 65%, 92%, 78%, and 99%. What is the average score for his six exams?

$$\begin{array}{c} (87+74+65+92+78+99) \div 6 \\ = 495 \div 6 \\ = 63 \end{array}$$

7. Thomas plays on the school basketball team. He gets 3 points if he scores a 3pointer, 2 points for fields-goals, and 1 point for each foul shot made. He scored 4 3pointers, 6 fg, and 9 free throws. How many points did he

8. A certain small factory employs 98 workers. Of these 10 receive a wage of \$200 per day and the rest receive \$100 per day. To the management, a week is equal to 6 working days. How much does the factory pay out for each week?

$$=6(2000 + 88400)$$

9. The final grade in a course is the average of the scores on 10 tests. Each test is graded on a scale of zero to 100 inclusive. A student's average on the first 7 tests was 84. The final grade of the student in the course was 63. What was the average student grade on the last 3 tests?

$$(10(63) - 7(84)) = 3$$

10. Use numbers 1, 2, 3, and 4, each once to replace variables in $a + b \times c^d$. What is the maximum value of the expression?

11. Challenge: How many digits are in the value of $2^{2003} \times 5^{1952} \div 4^{27}$?

$$0 2x5 = 10$$

$$4^{27} = (2^2)^{27} = 2^{54}$$

(2)
$$2^{2} \times 5^{2} = 100$$
 $\frac{2^{2008} \times 5^{1952}}{2^{54}}$

$$3) 2^{3} \times 5^{3} = 1000 = 2^{1944} \times 5^{1952}$$

$$=2^{1949}\times5^{1949}\times5^{3}$$

 $=10^{1949}\times125$

Name: Allen X	U	·		C	Date: <u>Scp. 22</u>	
		Math8H 2025 L	esson 5 Divisibility Rule	<u>s</u> .	<i>i</i> .	
1. How many of t	the following nu	ımbers are divisible	by 3? (No calculators)			
a) 115	b) 285	c) 498	d)9381	e) 3951	f) 52376	
No	Yes	Yes	(Do) Yea-	Yes	No	_
2. How many of t	the following n	ımbers are divisible	by 11? (No calculators)	•		
a) 4013	b) 4301	c) 30932	d)7392	e)69319	f)495614	
Mo	Yes	Yes	Yes	No	No	
3. How many of	the following n	umbers are divisible	by 7? (No calculators)			
a)1645	b) 4398	c)23030	d)46231	e)18557	f)82311	
Yes	No.	Yes	No	Yes	No	
4. Given that the	following num	bers are all divisible	by 3, what are the values	s of "A"?		
a) 4 <i>A</i> 3		1981 <i>A</i>	c)392AA		d)29A314A	,
2,5,8),3,6,9	2,5,8		1,4,7	
				-	•	
5. Given that the	following num	hers are all divisible	by 11, what are the value	es of "A"?	,	
a) 6A2		234 <i>A</i>	c)356A2A		d) 356AA	
,			1 / Next	21A73K	_	

6. Indicate if the following statements are TRUE or FALSE:

a) If a number is divisible by 9, then it must be divisible by 3

This

b) If a number is divisible by 3, then it must be divisible by 9

False

c) If a number is divisible by 2 and 4, then it must be divisible by 8

True

d) All even numbers that are divisible by 3 are also divisible by 6

True

e) If a number is divisible by 5, then the last digit must be a 0

False

f) The number 3AA78 can never be divisible by 11

True

g) If "A" is divisible by 3 and "B" is divisible by 3, then A+B is also divisible by 3

1 17646

Copyright All Rights Reserved at Homework Depot www.BCMath.ca

- 7. If the 5-digit number 1732p is divisible by 9, determine the value of p .
- 8. What digit can replace K so that the number 9K73K0 is divisible by 6? 1,4,7
 - Suppose the 6 digit number 2A5A93 is divisible by both 3 and 11, what are the possible values of the single digit number "A"? A=1
 - 10. What is the smallest positive integer that is divisible by 2, 3, 4, 5, and 6? Househeck 2 and 3 for multiple of 6, so 6 is cancelled out. There's already 4, so 2 is cancelled out 3×4×5=40
 - 11. A boy can divide his marble collection into even groups of 3, 4, or 6. What is the smallest number of marbles in his collection? 3×4=17
 - ends with 0

 2 3 5

 12. What is the smallest 3 digit number that is divisible by the first 3 prime as well as the first 3 composite numbers? ends with 0 first two digits' sum must be a multiple of 3. Try 120
 - 13. The number 3N + 63 is divisible by 7. Explain whether N would be divisible by 7. If N=7, it would be divisible by 7 because 3(7)+9(7)=12(7)
 - 14. Use the digits 4, 5, 7, 9, and one additional digit, construct the largest possible 5-digit number divisible by 6. 98754 4+5+7+9=25 25+8=33 divisible by3 Put the 4 ort the end divisible by 2
 - 15. Find the least perfect square number which is divisible by each of the numbers 8, 12, 15 and 20

 Perfect squares that and with 0= 10², 20², 30² (1). Since they end with 4.0 05, 4,5,2, and 10 one SOLVED 30° is the answer because it's divisible by 3 Copyright All Rights Reserved at Homework Depot www.BCMath.ca 2

16. It is given that a number is divisible by both 6 and 26. Name two other factors of the number. Show your work.

17. The integers a and b are both divisible by 2. Determine and explain whether each of the following statements would be always true or not. Provide a counter example to prove that a statement may not always be true. [Hint: If you are stuck, consider plugging in numbers for a and b and see if you can determine a trend.]

a.
$$a+b$$
 is divisible by 2 True
$$0 = \frac{a}{2}(2) \quad \frac{a}{2}(2) + \frac{b}{2}(2) = \frac{a+b}{2}(2)$$

$$b = \frac{b}{2}(2)$$

b.
$$a-b$$
 is divisible by 2 | rule $a=\frac{a}{2}(2)$ $\frac{a}{2}(2)-\frac{b}{2}(2)=\frac{a-b}{2}(2)$ $b=\frac{b}{2}(2)$

c. a+b is divisible by 4 False Example: 6+8=14 14-4-35

d.
$$a^2 + b^2$$
 is divisible by $4 T_{VM}$?

$$\alpha^2 = \frac{\alpha}{2}(2)^2 = \frac{\alpha}{2}(4)$$

$$b^2 = \frac{b}{2}(2)^2 = \frac{b}{2}(4)$$

ab is divisible by 4 \cdot

$$\alpha = \frac{9}{2}(2)$$
 $\alpha b = \frac{\alpha}{2}(2)x$

$$b = \frac{b}{2}(2)$$

Challenge Section:

18. When Rachel divides her favourite number by 7, the remainder is 5. What will the remainder be if Rachel multiply her favourite number by 5 then divide by 7?

19. The integers r , s , and t are three consecutive integers. Their sum is always divisible by at least 2 integers. What are those two numbers?

20. How many of the integers between 1400 and 2400, inclusive are an integer multiple of either 15 or 16 (or both)? find $|5:\frac{1400}{15} = 93.3 \frac{2400}{15} = 160 \quad 160 - 94 + 1 = 67$ $f_{ind} = 87.5 = 150 = 150 - 86 + 1 = 63$ find 240: $\frac{400}{740} = 5.83$ $\frac{2400}{740} = 10 10 - 6 + 1 = 5$ 67+63-5=125 21. How many numbers between 200 and 2000 are divisible by 6 or 7 but not both? To solve anything like this How many numbers are divisible by ...) 1. Venn, diagram (find the ones divisible by num 1 or num 2 but not both) 1. Venn diagram (find the ones divisible by num - or num 2 but 100 bours)

2. Multiples of 6: \(\frac{200}{6} = 33.3\), \(\frac{2000}{6} = 333.3\)

2. Multiples of 6: \(\frac{200}{6} = 333.3\), \(\frac{2000}{6} = 333.3\)

3. Do the same for \(\frac{728}{28}\)

4. Do the same for \(42\)

4.

22. Ultimate Challenge: The digits 1, 2, 3, 4, and 5 are each used once to compose a five digit number abode such that

the three digit number abc is divisible by 4, bcd is divisible by 5, and cde is divisible by 3. Find the digit "a"

el=5
$$core=3$$
 $cmust$ be even
 $so c=2 \text{ or } 4$
 $e=3$
 $c=4$ because cde is divisible by 3
 12453

$$\alpha = 1$$

Math 8 Honours HW Lesson 6 Prime, Factors, LCM, and GCF

- 1. What does it mean that two values are relatively prime? Explain? If the GCF of two values is 1, they are relatively prime.
- 2. If the GCF of "a" and "b" is one of the values "a" or "b", then what is the relationship between "a" and 'b'? a is one of b's factor
- 3. IF the LCM of "a" and "b" is one of the values "a" or "b", then what is the relationship between "a" and 'b'? is b's multiple

Circle all the prime numbers below. If it's not a prime number, give one of its factors other than 1:

4. Circle all the pr	ime numbers below.	If it's not a prime n	umber, give one of i	s ractors other than	
	(29\	39	<u>43)</u>	.49	61)
(23)	(49)				<u> </u>
\sim		\sim		. —	1
1				1 1	
				/	İ
1	!			,	
1					
			(101)	109	113
(71)	93	(79)	(101)	109	
				_	
	γ			•	
1	\ \				
				(a.F.F.	169
117	119	(137)	147	157	109
111/					
	_				1 17
1 1)			1		1 15
1 10	1 /				
1	,			,	, `
	1	1			

Given each set of numbers below, find the greatest common factor (GCF) and lowest common multiple (LCM):

Given each	set of numbers belo	v, into the greatest e	Olimon factor (GC)		
a) (15, 24)		ы (18,12)		c) (16,8)	
$a_{1}\setminus 10, 24$		b) (18,12) 8=2 ×3 ²	•	16-24	
15=31×51		10=473		1,10-7	
		12=2×3	1	16=2 ⁴ 8=2 ³	
24=23×3	1	12-2 10		0-2	*
1 /- 1 0			•		
			•		
0	10.0	acr h	LCM: 36	GCF: &	LCM:
GCF: 3	LCM: /20	GCF: 🖯	LCIVI:) ()		2011
$d\rangle\langle35,14\rangle$		e) (65, 91)		f) $\langle 195, 221 \rangle$, 1
	1 4	65=51×13		195=31×5 221=131×	1×131
1 25=5	x7'	- 60-0,10	,	001-151	10/
00 5	; - ,	1 91 =7'XI	ζ'	1 147 13 X	17
35=5 14=2	X71				
	ţ				
					•
				10	2014
GCF:	LCM: 70	GCF: 13	LCM: 465	GCF: 3	LCM: 3315
GCF: /	LCIVI: / V	1001.10			

How many prime numbers are there less than 100? (list them out)

25 of them are prime: 2,3,5,7,11,13,15,19,21,23,29,31,37,44,43,47,

7. Is "1" a prime number? Explain:
No, because it only has one factor, but prime numbers have two lactors.

3. Check if each of the following integers are prime numbers: (Use the Prime Number TEST). If the number is

NOT a prime, state of it's prime (other than 1)

(other man 1)	
b) 167	c) 279
$\sqrt{167} \approx 12 + 23,5,7,11$.	√279 ≈ 16 2,3,5,7,11,13
167 is prime	279=3=93
e) 493	f) 891
V493≈22 23,5,5,11,13,17,	√891≈29 2,3,5,7,11,13,17,19,
101 4013313 33	23
793711=29	891-3=297
h) 451	i) 717
$\sqrt{45} \approx 21 2,3,5,7,11,13,17,$	√717≈26 2,3,5,7,11,13,17,
19	23
451=11=41	717-3=239
k) 217	L)323
√217 ≈ 14 33,57,11,13	√323 ≈ 17 2,3,5,7,11,13,17
,	323:17=19
217=7=31	
	b) 167 $\sqrt{167} \approx 12 2,3,5,7,11$. 167 is prime e) 493 $\sqrt{493} \approx 22 2,3,5,7,11,13,17,19$ th) 451 $\sqrt{451} \approx 21 2,3,5,7,11,13,17,19$ 451 $\approx 21 2,3,5,7,11,13,17,19$ k) 217 $\approx 14 2,3,5,7,11,13$

Suppose "A" and "B" are integers with a GCF of "x" and a product of "y". What is the LCM in terms of "x" and "y"?

[x,y]=y

10. Suppose 1316 and 2820 have a GCF of 188. What is the LCM? $|3|6\times2820 \div |88=19740$

11. What is the smallest number with four factors?

6. has 1, 2,3, and 6

12. Find a number between 1 to 100 that has 5 factors?

16 because it's a perfect square

13. Why do perfect squares have an "odd" number of factors? Explain:

because they have one pair of repetitive actors.

14. What number less than 100 has the greatest number of factors?

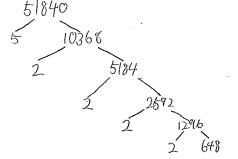
15. In the multiplication shown below, each letter represents a different digit. What digit does the letter "C" represent?

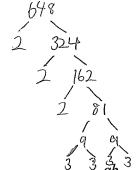
ABCDE

<u>×.E</u> **EDADE** E = 1,5, or 6

can't be I because the result is different

16. Find the smallest two-digit number that is twice the product of its digits


17. What is the product of the LCM and GCF of two distinct numbers "a" and "b"? d()


18. Suppose that $N_1=a^3\times b^4\times c^5$ and $N_2=a^2\times b^1\times c^6\times d^2$, where "a", "b", "c" and "d" are all prime factors. What is the GCF and LCM in terms of "a", "b", "c" and "d"?

$$(N_1, N_2) = a^2 \cdot b^4 \cdot c^5$$

 $[N_2, N_3] = a^3 \cdot b^4 \cdot c^6 \cdot d^2$

19. If two numbers "a" and "b" have a GCF of 36 and a LCM of 1440, then what are the possibilities of "a" and "b" if

a>b? 1440×36=51840 51840=27×34×51

20. Challenge: Given that a, b, c, d, e, f, g, h, and i all represent a different digit from 1 to 9. If $\frac{ab}{cde} + \frac{fg}{hi} = 7$, ther what numbers do each letter represent?

Date: Oct. 9, 2025

Math 8H Lesson 7 Prime Factorizations (2025)

- 1. What is the purpose of finding the prime factorization of a number? Find GCF, LCM, number of factors, etc.
- 2. When given a number "N" in the form of its prime factorization, how do you find the number of factors of "N"? ie: $N = 2^a \times 3^b \times 5^c$ $(a+b)\times(b+b)\times(c+b)$
- 3. When given the number "N", with $N=2^3\times 6^4$, a student got the number of factors of 'n" as $4\times 5=20$. What did this student do wrong? Explain: 6 is not prime, $6^4=2^4$ and 3^4
- 4. When given a number "N" in the form of its prime factorization, how do you find all the factors of "N" that are perfect squares? Ie: $N=2^8\times 3^9\times 5^{10}$. Explain:

 Only use the exponents that are even because odd exponents are not perfect 2^4 3^4 5^4 $5 \times 5 \times 6 = 150$
- 5. When given a number "N" in the form of its prime factorization, how do you find all the factors of "N" that are ODD numbers? Ie: $N = 2^8 \times 3^9 \times 5^{10}$. Explain:

 You ignore all the even bases because all the multiples of 2 are even
- 6. When given a number "N" in the form of its prime factorization, how do you find all the factors of "N" that are EVEN numbers? Ie: $N = 2^8 \times 3^9 \times 5^{10}$.Explain:

 You use the even and odd bases except 2^0 because $2^0 = 1$ which is odd
- 7. When given a number "N" in the form of its prime factorization, how do you find the SUM of all the factors of "N"? Ie: $N = 2^4 \times 3^5 \times 5^6$. Explain: $(2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^3 + 3^4 + 3^4 + 3^4 +$
- 8. When given TWO or more numbers in their prime factorization form, how would you find their GCF? Explain: ie: $N_1 = 2^3 \times 3 \times 5^4$ $N_2 = 2^4 \times 3^2 \times 5^2$ $N_3 = 2 \times 3^4 \times 5^6$ Use the lowest exponents of the bases that all numbers share, because factors are always SMALLER!
- 9. When given TWO or more numbers in their prime factorization form, how would you find their LCM? Explain: ie: $N_1 = 2^3 \times 3 \times 5^4$ $N_2 = 2^4 \times 3^2 \times 5^2$ $N_3 = 2 \times 3^4 \times 5^6$ Use the largest exponents of all the bases, because multiples the always BIGIGER!

10. Prime the Prime Factorization of each number below. Then indicate whether if it is a perfect square or perfect cube, neither, or both:

perfect cube, neither, or both:		
24	800	864
24=2°x3'	$800 = 2^5 \times 5^2$	$864 = 2^{5} \times 3^{3}$
neither	heither	
	(10 totion	
$\begin{array}{c c} 1800 \\ (600 = 2^3 \times 5^2 \times 11)^t \end{array}$	648 $649 = 2^3 \times 3^4$	210
1800-275 11	648=213	210=2×3×5×7
neither	neither	neither
		nguner
5040	3136 3136=2 ⁶ ×7 ²	2744
\$040=2562x51x71	\\ \(\(\lambda \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$2744=2^3 \times 7^3$
neither	perfect square	perfect cube
	,	1
$N = 2^2 \times 50 \times 5$	$N = 64 \times 25 \times 49$	$N = 30 \times 45 \times 40$
$N=2^3 \times 5^3$	$N = 2^6 \times 6^2 \times 7^2$	$N = 2^4 \times 3^3 \times 5^3$
1 10 2.0	, , ,	5 1
perfect cube	a surfa di a - 1-1/00	neither
popular chia	perfect square	;

11. Given each pair of numbers in their prime factorization, find the GCF and LCM

25 & 45 25=5 ² 45=3 ² ×5 ¹ (25,451=5 [25,45]=225	$N_1 = 2^2 \times 3^3 & N_2 = 2^3 \times 5^2$ $(N_1, N_2) = 4$ $(N_1, N_2) = 5400$
$N_{1} = 2^{3} \times 5 \times 7 & N_{2} = 2 \times 3^{4} \times 5^{2}$ $(N_{1}, N_{2}) = \{0\}$ $[N_{1}, N_{2}] = \{3 + 00\}$	$N_1 = 2^{6} \times 4 \times 6, & N_2 = 10^{6} \times 8$ $(N_1, N_2) \stackrel{?}{=} 32$ $(N_1, N_2) = 4800$

$N_1 = a^2 b^{13} c^{15} & N_2 = a^5 b^8 c^{11} d^5$	$N_1 = 2^7 \& N_2 = 3^5$
$(N_1, N_2) = \alpha^2 \times b^8 \times c^{11}$	(N1, N2)=
EN, N2J=05xb12xc15x015	EN, N2J=31104
·	

12. Use the prime factorization to find the number of factors:									
$2^4 \times 3^2 \times 5^2 =$	$3^4 \times 5^3 \times 11^8 =$								
1,24-1,132-1,152-1,	(34-11/13-11/18-1)								
$\left(\frac{2^{4-1}}{2-1}\right)\left(\frac{3^{2-1}}{3-1}\right)\left(\frac{5^{2}-1}{5-1}\right)$	$\left(\frac{3^{4}-1}{3-1}\right)\left(\frac{1^{3}-1}{1-1}\right)$								
too lazy to calculate									
20124	4500								
$20124 = 2^{2} \times 3^{2} \times 13^{1} \times 43^{1}$ $(\frac{2^{2}-1}{2-1})(\frac{3^{2}-1}{3-1})(\frac{1}{3})(\frac{4}{3})$	$4500 = 2^{2} \times 3^{2} \times 5^{3}$ $(\frac{2^{2}-1}{2-1})(\frac{3^{2}-1}{3-1})(\frac{5^{3}-1}{5-1})$								
$ \frac{2^{5} \times 3^{6} \times 36}{(\frac{2^{5}-1}{2-1})(\frac{3^{5}-1}{3-1})} $	$ \begin{array}{c} 3^{5} \times 7^{12} \times 21 \\ \left(\frac{3^{5}-1}{3-1}\right) \left(\frac{7^{12}-1}{7-1}\right) \end{array} $								
$N = 8^{2} \times 3^{6} \times 15^{2} + 5^{2} \times 15^{2} \times 15^{2} + 5^{2} \times 15^{2} \times 1$	$ \frac{2^{6} \times 2^{3} \times 2^{6} \times 5^{3} - 2^{12} \times 3^{3} \times 5^{3}}{N = 12^{3} \times 20^{3}} \times 20^{3} \times 5^{3} \times 5$								

13. How do you tell if a number is a perfect square or cube by looking at the prime factorization:

See if all the exponents are mulitiples of 2/3

4. Find the lowest value of N such that the square root will become a positive integer: a) $\sqrt{2^35^17^2}N$

b)
$$\sqrt{4^2_57^25^2}N$$

c)
$$\sqrt{3^4 5^3 12 N} = \sqrt{3^5 5^5 2^2 N}$$

e)
$$\sqrt{13992}N$$

$$|3992 = 2^3 \times 3' \times ||' \times 53'$$

 $N = 3 \times || \times 53$

$$664 = 2^3 \times 83^4$$

$$N = 2 \times 83 + 1$$

N=1067

N = 167

15. Find the lowest value of N such that the integer will have the indicated the indicated number of factors:

a) 2^33^N (8 factors)

b)
$$(8) \times 27N$$
 (48 factors)

c) $2^3 3^4 N^2$ (56 factors)

$$12^{2} = 3^{2}2^{4}$$

$$2^{3}3^{4} | 2^{2} = 2^{7}3^{6}$$

$$(7+1)(6+1)=56$$

N = 12

16. Two positive integers have a GCF of $2 \times 3 \times 5$ and a LCM of $2^3 \times 3^4 \times 5 \times 7$. If one of the numbers is 210, find the other number.

 $210 = 2 \times 3 \times 5 \times 7$

The other number must have: 23, 3, 5.

So the other number is 23x34x5

17. Find the smallest number N, such that $2^33^4N^2$ has 56 factors.

That's the same thing as 15.c)

18. Two numbers are "relatively prime" if they do not share any common factors other than 1. How many positive integers less than or equal to 40 are relatively prime to 40?

40=23x5' Only turnbers without 2 or 5 as their factor
123x5' Only turnbers without 2 or 5 as their factor
212x23x45x6789x11x213x45x67x192x
212x23x42x5x6272x82930313x2333x45x53x373x394x

19. Challenge: Suppose there are 1000 lockers and 1000 people. The first person opens all the lockers; the second person closes every second locker; the third person changes the state of every third locker [ie: if it's open, he closes it or if it's closed, he opens it]. This process continues, where the nth person changes the state of every nth locker. After all 1000 people have gone through, how many lockers are open?

uio	State	OL	JVOI.	y 111,	11 10	OII C	1.	LYTE	CI a	יטווווווווווווווווווווווווווווווווווווו	oo pe	opic	marc	gom	unc	ugn,	, mon	IIIai	ily io	ICKC.	L,
bission	1 "	2	3	4	5	6	7	8	oj	10	[]]	12	13	14	15	16	[7]	181	19]	20	
1	0	0	0	0					0	1 /3	0	0	0	0	0	0	0	0	0	0	
9	0	X	0	X		AT TOWN				X	0	X	0	X	0	X	0	X	0	X	
3	0	X	X	X	0	0	0	X	X	X	O	0	0	X	X	X	0	0	0		.,
4	\bigcirc	X	X	0	0	0	0	0	X	X	0	X	0	X	X	0	0	0	0	0	
5	0	X	X	1	X	ý .				0	0	X	0	X	0	0				X	
7	(*)	X	X		X	-		. ,		0	0	0	0	X	0	0	0	X	0	X	
7	0	X	X	\	X	-	-			0	0	0	0	0	· ()	\bigcirc	0	X	0	X	
8	0	X			X	STATE OF THE PERSON NAMED IN	C. Per Specimen	1 1	- 1	0	\circ	0	0	0	0)	X	0	图	0	X	Tal
9	0	X	X	10		i.	X	1	0	0	0	0	0	\circ	0	X	0	0	0	X	
E0170277	1			1	-	-			1				Control of the Contro							a	
* 61	7		The state of the s			ر المتالية	The second se	وسلمهاريان			ice and a second										
	X				فعدالك المراجع		والصفطاعين وو				dimension of the second	1						and the second	e de la composition della comp	dinastinity as	
	1		Ĺ	*			با_	<i>^</i> :	ķ	i j			į				l	And the second	2		į

Perfect - just calculate all the perfect squares be they have squares - an odd amount of factors.